Спрос на платья женские осенние повседневные

straight Поисковый запрос Запрос
question-mark
То слово или фраза, которые пользователи вводят в поисковую строку
straight Спрос
question-mark
Количествово запросов, набранных пользователями в поисковой строке Количествово запросов, набранных пользователями в поисковой строке / Динамика запроса относительно предыдущего месяца
straight Тренд
question-mark
Динамика запроса относительно предыдущего месяца
straight Предложений
question-mark
Количество товарных карточек по запросу Количество товарных карточек по запросу / Соотношение спроса к предложению
straight Конкуренция
question-mark
Соотношение спроса к предложению
платья женские повседневные осень
1 945
7530.8 %
164 522
164 522
airware 8458.71 %
Перегретая
платья осенние женские повседневные
1 649
750.5 %
164 522
164 522
airware 9977.08 %
Перегретая
платья женские осень повседневные
1 542
2477.9 %
164 522
164 522
airware 10669.4 %
Перегретая
женские платья на осень повседневные
1 436
3828.9 %
164 522
164 522
airware 11457 %
Перегретая
платья на осень женские повседневные
1 171
89.1 %
164 522
164 522
airware 14049.7 %
Перегретая
осенние платья женские повседневные
790
44.5 %
164 522
164 522
airware 20825.6 %
Перегретая
платья женские осень повседневные больших размеров
686
204.5 %
66 360
66 360
airware 9673.47 %
Перегретая
платья осенние женские больших размеров повседневные
659
172.7 %
66 359
66 359
airware 10069.7 %
Перегретая
платья повседневные женские осень
478
473 %
164 522
164 522
airware 34418.8 %
Перегретая
платья женские повседневные больших размеров осень
468
535 %
66 322
66 322
airware 14171.4 %
Перегретая
платья женские осень повседневные длинные
259
152.8 %
99 063
99 063
airware 38248.3 %
Перегретая
платья женские повседневные осень весна
221
98.3 %
190 584
190 584
airware 86237.1 %
Перегретая
женские платья на осень повседневные больших размеров
211
167.9 %
66 115
66 115
airware 31334.1 %
Перегретая
платья женские осенние повседневные
210
294.2 %
164 522
164 522
airware 78343.8 %
Перегретая
платья осенние женские повседневные длинные
207
189.9 %
99 063
99 063
airware 47856.5 %
Перегретая
повседневные платья женские осень
186
241.8 %
164 522
164 522
airware 88452.7 %
Перегретая
платья женские повседневные осень длинные
157
342.5 %
99 063
99 063
airware 63097.5 %
Перегретая
платья женские повседневные осень больших размеров
153
218.4 %
65 934
65 934
airware 43094.1 %
Перегретая
платья женские осень повседневные короткие
151
154.1 %
63 360
63 360
airware 41960.3 %
Перегретая
женские платья на осень повседневные длинные
129
154.9 %
99 063
99 063
airware 76793 %
Перегретая
платья женские осень повседневные теплые
111
151.8 %
40 281
40 281
airware 36289.2 %
Перегретая
платья осенние женские повседневные короткие
104
157.2 %
63 360
63 360
airware 60923.1 %
Перегретая
платья женские повседневные осень зима
88
999999 %
132 785
132 785
airware 150892 %
Перегретая
осенние платья женские повседневные теплые
87
298.6 %
40 812
40 812
airware 46910.3 %
Перегретая
платья женские повседневные осень короткие
85
64.9 %
63 360
63 360
airware 74541.2 %
Перегретая
платье женское весна-осень повседневные
83
972.2 %
190 584
190 584
airware 229619 %
Перегретая
платья на осень женские повседневные теплые
82
332.8 %
40 281
40 281
airware 49123.2 %
Перегретая
осенние платья женские повседневные больших размеров
78
41.8 %
65 356
65 356
airware 83789.8 %
Перегретая
платья осенние женские повседневные больших размеров
68
157.9 %
65 245
65 245
airware 95948.5 %
Перегретая
осенние платья женские повседневные длинные
67
496.7 %
99 063
99 063
airware 147855 %
Перегретая
платья осенние женские повседневные теплые
63
153.3 %
40 281
40 281
airware 63938.1 %
Перегретая
платья на осень женские повседневные больших размеров
54
11.4 %
65 087
65 087
airware 120531 %
Перегретая
осенние платья женские повседневные короткие
43
184.4 %
63 360
63 360
airware 147349 %
Перегретая
платья женские осень 2025 повседневные
36
162.5 %
88 634
88 634
airware 246206 %
Перегретая
женские платья повседневные осень
33
521.4 %
164 522
164 522
airware 498552 %
Перегретая

Что даёт анализ топа запросов Wildberries?

Каждый поисковый запрос на Wildberries — это прямой сигнал спроса. Наш инструмент позволяет:
  • Увидеть объём спроса по каждому запросу — сколько раз его вводили за месяц.
  • Оценить динамику тренда: растёт интерес или падает по сравнению с прошлым месяцем.
  • Проанализировать конкуренцию: сколько карточек уже продаётся и насколько рынок насыщен.
  • Рассчитать потенциал ниши: чем ниже соотношение «спрос / предложение», тем выше шанс на быструю окупаемость.

Как работать с топом запросов ВБ?

  1. Не гонитесь за популярностью. Самые популярные запросы на WB (например, «духи», «кофта», «сумка») часто — перегретые ниши с сотнями тысяч карточек и минимальной рентабельностью.
  2. Ищите рост в деталях: запросы вроде «энзимная пудра» могут иметь высокий спрос и при этом — низкую конкуренцию.
  3. Учитывайте сезонность: интерес к «пеналу» или «дневнику» резко падает летом — анализ тренда помогает не ошибиться со сроками запуска.
  4. Сравнивайте формулировки: «лабубу» и «лабубу игрушка» — разные ниши с разным уровнем конкуренции и потенциалом прибыли.

Почему Trenz — лучший способ анализировать топ запросов Вайлдберриз?

  • Данные обновляются регулярно — вы видите актуальную картину рынка.
  • Простая визуализация: рост или падение тренда, уровень конкуренции.
  • Фокус на прибыльности, а не просто на популярности: мы помогаем находить ниши, где реально можно заработать.
telegram-icon