Спрос на платья осенние женские повседневные

Анализ товаров по ключу
Общее кол-во продаж Значение скрыто
Неудовлетворенный спрос Значение скрыто
Цена закупки Значение скрыто
Цена продажи Значение скрыто
Прибыль Значение скрыто
Наличие на складе Значение скрыто
Контакты поставщиков Значение скрыто
straight Поисковый запрос Запрос
question-mark
То слово или фраза, которые пользователи вводят в поисковую строку
straight Спрос
question-mark
Количествово запросов, набранных пользователями в поисковой строке Количествово запросов, набранных пользователями в поисковой строке / Динамика запроса относительно предыдущего месяца
straight Тренд
question-mark
Динамика запроса относительно предыдущего месяца
straight Предложений
question-mark
Количество товарных карточек по запросу Количество товарных карточек по запросу / Соотношение спроса к предложению
straight Конкуренция
question-mark
Соотношение спроса к предложению
платья осенние женские повседневные
2 069
315.6 %
189 662
189 662
airware 9166.84 %
Перегретая
платья женские повседневные осень
2 006
564.4 %
189 662
189 662
airware 9454.74 %
Перегретая
платья женские осень повседневные
1 564
835.9 %
189 662
189 662
airware 12126.7 %
Перегретая
платья на осень женские повседневные
1 518
309.7 %
189 662
189 662
airware 12494.2 %
Перегретая
женские платья на осень повседневные
1 447
3857.9 %
189 662
189 662
airware 13107.3 %
Перегретая
осенние платья женские повседневные
1 014
149.6 %
189 662
189 662
airware 18704.3 %
Перегретая
платья осенние женские больших размеров повседневные
646
151.1 %
66 032
66 032
airware 10221.7 %
Перегретая
платья женские осень повседневные больших размеров
638
180.7 %
66 029
66 029
airware 10349.4 %
Перегретая
платья женские повседневные больших размеров осень
517
665.5 %
65 975
65 975
airware 12761.1 %
Перегретая
платья повседневные женские осень
435
456.5 %
189 662
189 662
airware 43600.5 %
Перегретая
платья женские повседневные осень весна
264
275.9 %
184 556
184 556
airware 69907.6 %
Перегретая
платья женские осенние повседневные
237
177.4 %
189 662
189 662
airware 80026.2 %
Перегретая
платья осенние женские повседневные длинные
233
153.1 %
97 827
97 827
airware 41985.8 %
Перегретая
платья женские осень повседневные длинные
210
151.9 %
97 827
97 827
airware 46584.3 %
Перегретая
женские платья на осень повседневные больших размеров
187
153.9 %
69 870
69 870
airware 37363.6 %
Перегретая
платья женские повседневные осень больших размеров
179
845 %
69 793
69 793
airware 38990.5 %
Перегретая
платья женские повседневные осень длинные
174
1400 %
97 827
97 827
airware 56222.4 %
Перегретая
повседневные платья женские осень
173
204.5 %
189 662
189 662
airware 109631 %
Перегретая
осенние платья женские повседневные теплые
114
170 %
42 148
42 148
airware 36971.9 %
Перегретая
платья женские осень повседневные короткие
105
152.9 %
62 845
62 845
airware 59852.4 %
Перегретая
платья на осень женские повседневные теплые
104
175.3 %
42 148
42 148
airware 40526.9 %
Перегретая
платья женские повседневные осень короткие
104
132.5 %
62 845
62 845
airware 60427.9 %
Перегретая
платье женское весна-осень повседневные
87
4300 %
184 556
184 556
airware 212133 %
Перегретая
платья осенние женские повседневные короткие
86
153.6 %
63 188
63 188
airware 73474.4 %
Перегретая
осенние платья женские повседневные больших размеров
84
94.8 %
68 852
68 852
airware 81966.7 %
Перегретая
платья женские повседневные осень зима
82
861.1 %
131 765
131 765
airware 160689 %
Перегретая
осенние платья женские повседневные длинные
75
220.5 %
99 217
99 217
airware 132289 %
Перегретая
платья на осень женские повседневные больших размеров
66
22.5 %
68 186
68 186
airware 103312 %
Перегретая
платья осенние женские повседневные больших размеров
58
157.4 %
68 026
68 026
airware 117286 %
Перегретая
платья женские осень повседневные теплые
46
152.2 %
40 281
40 281
airware 87567.4 %
Перегретая
осенние платья женские повседневные короткие
41
167.1 %
63 360
63 360
airware 154537 %
Перегретая

Что даёт анализ топа запросов Wildberries?

Каждый поисковый запрос на Wildberries — это прямой сигнал спроса. Наш инструмент позволяет:
  • Увидеть объём спроса по каждому запросу — сколько раз его вводили за месяц.
  • Оценить динамику тренда: растёт интерес или падает по сравнению с прошлым месяцем.
  • Проанализировать конкуренцию: сколько карточек уже продаётся и насколько рынок насыщен.
  • Рассчитать потенциал ниши: чем ниже соотношение «спрос / предложение», тем выше шанс на быструю окупаемость.

Как работать с топом запросов ВБ?

  1. Не гонитесь за популярностью. Самые популярные запросы на WB (например, «духи», «кофта», «сумка») часто — перегретые ниши с сотнями тысяч карточек и минимальной рентабельностью.
  2. Ищите рост в деталях: запросы вроде «энзимная пудра» могут иметь высокий спрос и при этом — низкую конкуренцию.
  3. Учитывайте сезонность: интерес к «пеналу» или «дневнику» резко падает летом — анализ тренда помогает не ошибиться со сроками запуска.
  4. Сравнивайте формулировки: «лабубу» и «лабубу игрушка» — разные ниши с разным уровнем конкуренции и потенциалом прибыли.

Почему Trenz — лучший способ анализировать топ запросов Вайлдберриз?

  • Данные обновляются регулярно — вы видите актуальную картину рынка.
  • Простая визуализация: рост или падение тренда, уровень конкуренции.
  • Фокус на прибыльности, а не просто на популярности: мы помогаем находить ниши, где реально можно заработать.
telegram-icon